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SUMMARY 

An application and an extension (to complex variables) of the classical augmented Lagrangian method is 
performed. Finite element computations are realized in the two-dimensional case of a n  harmonic Navier- 
Stokes problem with periodic boundary conditions. A formulation (extended from the traditional Stokes 
problem) involving a simple Lagrangian, solved by the Uzawa algorithm, was previously used.’ This 
treatment proved unsatisfactory for large frequencies. The efficient and well-known augmented Lagrangian 
technique solved by the Uzawa algorithm is used to  overcome these shortcomings. Other, better techniques 
could be used. Nevertheless the simple method used here is efficient. Moreover the numerical implementation 
needs little memory storage, which is an important factor in this particular case. The well-known conditioning 
technique employed is shown to be well-adapted in this case, a fact which emerges from the study of the non- 
symmetric problem involved. Finally, many tests, computations and experimental data are presented. 

KEY WORDS Navier-Stokes Problem Augmented Lagrangian Method Uzawa Algorithm Conforming Finite 
Element Methods 

INTRODUCTION 

This paper shows the efficiency, for one very particular case, of augmented Lagrangian techniques. 
The convergence of the Uzawa algorithm applied to this formulation is here studied numerically 
(non-symmetrical problem). These traditional techniques are extended to unknown functions with 
complex values, and the resulting structure is well-adapted to the conditioning technique 
employed. 

First, all working assumptions and the problem to be solved will be briefly reviewed, along with 
the results obtained with the usual Lagrangian formulation. Up to this point, the problem to be 
solved remains unchanged and we conclude that the Lagrangian formulation solved by the Uzawa 
algorithm does not allow computations for large frequencies.’ 

Subsequently, we recall the augmented Lagrangian formulation applied to a usual homo- 
geneous Stokes problem.2 This technique is then extended and applied to our problem. After 
a reminder of the two discrete problems which were used in Reference 1 and which are used 
here, the suitability of the method is stressed. 

A theoretical study of the convergence of the Uzawa algorithm is possible for the classical 
homogeneous Stokes problem.’ Results will be recalled in the second part of this paper. It is to be 
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noted that theoretical results are not available for non-symmetric problems. Therefore, tests on a 
simple case are performed and numerical solutions are compared to theoretical ones. 

Finally computations on a severe geometrical example are presented and compared with 
previous computational results, asymptotic behaviour results, and experimental data. 

WORKING ASSUMPTIONS, THE PROBLEM TO BE 
SOLVED AND FIRST RESULTS 

It should be pointed out that all of the following section is a summary of a previous paper.' 

Working assumptions 

The physical problem is the dynamic (harmonic only) filtration of a Newtonian fluid through a 
porous medium. 

Geometrical context 

(a) Two dimensional problem: only media where filtration can be studied in two dimensions are 
taken into account. 

(b) Periodic problem: the medium comprises a set of identical elementary periods SZ. The study is 
then limited to one period will periodic boundary conditions on parameters and with 
unknown functions. This property is called SZ-periodicity. Two periods are sketched in 
Figure 1. 

Assumptions regarding the fluid. The fluid is assumed to be viscous, Newtonian and 
incompressible. 

Assumption regarding the skeleton. It is rigid, and so will not lose its shape. 

Other assumptions. The Reynolds number of the flow is very low: convective terms in Navier- 
Stokes equations are negligible. 

Notations and problem to  be solved 

Under these assumptions and the notations below, the problem to be solved is written: find the 

a atpi' at2pl X1 

Figure 1. Two periods Iz of a porous medium: Iz, = fluid domain; Iz, = solid domain; rl = fluid-solid interface 
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fields v and p in R, so that 

a z v j  ap + - + F j  = iopvj, 
p a  axj 

- 
a v  . 
axj 2 - 0  

and 
u j  = 0 on rl ,  v j  and p R-periodic on r2 ( j  = 1,2), 

where p is the fluid mass per unit of volume, p is the dynamic viscosity, v j  is the velocity component 
(R-periodic unknown functions with complex values), p is the pressure (R-periodic unknown 
functions with complex values), x j  is the spatial variablej = 1,2, F j  is a constant body force (real 
constant), o is the constant pulsation, i is the pure imaginary number. 

The formulation (l), with complex unknown functions, is quite usual in the case of an harmonic 
study. The unknown functions are the complex amplitude of the true unknowns functions. (1) is 
analogous to the Navier-Stokes equations. 

Previous computations and conclusions 

Problem (1) is a particular, linear Navier-Stokes problem with complex unknown functions and 
R-periodic boundary conditions. 

The numerical treatment of the periodic boundary condition is not recalled here' and will 
remain unchanged. Problem (1) was treated' by extending the traditional Lagrangian formulation, 
solved with the Uzawa a l g ~ r i t h m . ~ - ~  Two kinds of conforming finite elements were empl~yed .~  

Whereas in the static case (w=O, periodic Stokes problem), or for small values of w, good 
results were obtained; for large values of the pulsation o, it becomes impossible to reach results, 
since the convergence of the Uzawa algorithm is very slow. Our purpose in what follows is to 
overcome this limit at lower cost and attempt to explain this behaviour. 

THE AUGMENTED LAGRANGIAN METHOD 

This method, presented in Reference 2 for the traditional homogeneous Stokes problem, is now a 
well-known efficient preconditioning technique. We first recall the main results for the 
homogeneous Stokes problem.2 A theoretical (spectral) study of the convergence of the Uzawa 
algorithm is possible. The matrix of the linear system is symmetric positive definite. 

As in Reference 1, by extension to our periodic, harmonic problem, we will also underline the 
suitability of the augmented Lagrangian to our problem, and to similar kinds of problems. 

The homogeneous Stokes problem 

obtain the homogeneous Stokes problem: 
If we replace (lc) by homogeneous boundary, conditions and we take w to be zero in (la) we 

a 2 v j  ap pe axj 
+-+FF,=O 
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v j  = 0, V MEdRl (boundary of R) ( j  = 1,2). 

At this stage, note that all components in these equations have real values. 
Some classical definitions 

is a Hilbert space with the scalar product 

is a traditional Sobolev space with the norm induced by 

HA = (V€EH’(R1)lVlpn = O} 

is a Hilbert space with the scalar product 

am av 
RI axj axj V R , V E H A ;  ( ( a , v ) ) =  --dR. 

And finally the subspace V is defined by 

V = (vE(H~(Rl))2/divv = 0} 

with the scalar products 

ami avi 
axj  ax j  Va,vgV; ((a,v))= [ --ddR, 

(a, v) = ajvjdSZ. J RI 

So we now have the usual weak formulation equivalent to (2): find VEV so that 

VaE V;  ~ ( ( a ,  v)) = (a, F). ( 3 )  
Let J(v)(vE V )  now be the quadratic form 

P 
J ( v )  = T ((v, v)) - (F, v),  

equation ( 3 )  is then equivalent to the minimization problem: find V E  I/ so that 

v U E  v; J(v) < J(u). (4) 

This minimization problem under the constraint VEV, is then usually transformed into an 
equivalent saddle-point problem by the use of the Lagrangian L ? , ’ v 3  defined by 

V v ~ ( H ~ ( r 2 , ) ) ~ ;  V~EL’(R,); L?(v,p) = - ( (v ,  v)) - (F, v) + ( p ,  div v).  P 
2 
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The equivalent saddle-point problem is written: find VE(HA(R,))~, and peL2(Q,) so that 

v Ue(H:(Q,))2; v 4e~z(Ql) ;  =w, 4) < 9 ( V , P )  < = m , P ) .  (5 )  

The numerical treatment used in Reference 1 is an extension of this formulation (5). 
Discrete approximations of the spaces (Hh(R,))2 and L2(R,) (or the analogous complex spaces 

for our extension) are possible, and the corresponding discrete problem is then solved by using the 
Uzawa algorithm. 

Nevertheless (5) can be replaced by another equivalent saddle-point problem using the 
augmented Lagrangian Yr.’ 

The study made in Reference 2 shows that this refinement applied to the usual homogeneous 
Stokes problem increases the convergence of the Uzawa algorithm. The augmented Lagrangian 

is defined as 

Vve(H~(R,))2; VpeL2(0,); 

Yr(v, p )  = 9 ( v 7  p )  + r(div v, div v), 

LYr(v,p)=-((v,v))--(F,v) +(p,divv)+ r(divv,divv), P 
2 

where r is a parameter to be chosen. 
The equivalent saddle-point problem is written: find v ~ ( H h ( n , ) ) ~  and ~EL’(R,) so that 

v ~ w h ( Q l ) ) 2 ;  VqeL2(R,); Yr(v,q) < Y , ( V , P )  < T r ( U , P ) .  (6) 

It is to be noted that the Uzawa algorithm can be directly applied LO this continuous problem (6), 
as it was by Temam3 in the case r = 0. In practice, this means that the rate of convergence of the 
Uzawa algorithm must bear no relation to the refinement of the mesh employed. Nevertheless, we 
need to build a discrete approximated problem, in order to obtain numerical results. 

Several approximations of the spaces (H;(R,))2 and LZ(R,) are available in the literature. We 
may now recall just two convergent approximations that were previously used’ and that will be 
used again, which are both conforming finite element  method^.^ It is known that to obtain a 
convergent approximation, they must satisfy the Babuska-Brezzi c ~ n d i t i o n . ~ , ~  This means that 
the finite space W approximating (H;(R,))’ and Q approximating L2(R,) must be chosen with care. 
Or in other words, the incompressibility condition will be partially satisfied. With the spaces Wand 
Q we need to build a discrete divergence operator. In the following it will be denoted by div,. 
Table I briefly recalls the two kinds of Crouzeix-Raviart elemects5 used. Note that the h index 
indicates discrete quantities. 

Problem (6) is then approximated to: find vhe W and pheQ so that 

VueW and VqeQ (7) 

Y:(vh? 4)  9:(vh?ph) Y:(U,Ph), 
with 

P 
~ : ( v h , P h ) = 2 ( ( V h , v h ) ) - ( F , V h )  +(Ph,diVhVh) + r(divhvh,divhvh). 

And (7) is solved using the Uzawa algorithm, which leads to a statement of the numerical problem 
as follows, where the upper index (n) gives the step in the Uzawa algorithm: v r )  and p r ’  are 
presumed known; find v ~ + ’ ) E  W so that 

(84  t / U E w ;  - ( ( U , V P + ’ ) ) )  P + r(diV,U,diV,Vr+”)=(u,F)- (diVhU,pr’) 
2 
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Table I 

Kind of finite Space W 
element defined by 

Space Q div, 
defined by defined by 

On each element, velocity The pressure is The average 
components are defined by constant on each condition 
traditional quadratic element, 
interpolation on the six nodes: discontinuousfrom div v,dQ = 0 
the three vertices and the three 
midpoints on each edge. The (each element) velocity is continuous from one 

but s one element to  the 
next 

(without bubble 
function) element to the next 

The previous approximation The pressure is a The average 
plus a supplementary term of linear function on condition 
order three, the bubble each element 
f u n c t i ~ n . ~ , ~  The velocity is (linear interpola- div v , , d ~  = 0 
continuous from one element to tion on the three 
the next. vertices. The pres- 

sure is then discon- 
tinuous from one (each element) 

s 
(with bubble 
function) 

element to  the 
next. (for all linear 

functions q) 

c being a convergence parameter to be chosen. 

systems in vt")  and p?+l ) ,  vectors of R" 
And with matrix notations, the formulations (8a) and (8b) lead to the following two linear 

u T A v t + l )  + ruTDTDvt+l) = uTFh - uTDTMpt), 

qTMTM(pt'1) - p r ) )  = CqTMTDVt") 

(uT denotes the transposed matrix of u). By simplifying uT and qT we obtain 

A r h  v ( " + l )  = Fh - GTpt' ,  
B(pf+') - P h  (n) ) =  cGvF+", 

with A, = A + rDTD, G = MTD and B = MTM. 
Note that A is a symmetric, positive definite matrix. Thus A, is also symmetric. This traditional 

problem, with a symmetric positive definite matrix A and M reduced to the scalar 1, is studied in 
detail in Reference 2, where convergence of the Uzawa algorithm is studied (in spectral terms), 
giving the results as plotted in Table 2, in which A,,, > 0 is the smallest eigenvalue of A and I ,  > 0 is 
the biggest eigenvalue of A. 

In conclusion, the case r # 0 seems to be more suitable than Y = 0 for the Stokes problem, and 
more suitable as r increases. Nevertheless we should mention that the matpix A, becomes ill- 
conditioned for large values of r .  So an upper limit exists on the choice of r .  

Now it is interesting to look at our particular problem. 
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Table I1 

Parameter r 0 r 

2 
+ 

2 + r(L,  + 1,) 
2ri,,,iM + i, + A M  

cOpt = r + Optimum parameter c Copt = ~ 

Rate of convergence with 1 - im/)LM 1 - i,/& 
C = Copt < < 

1 + &,,/AM 1 + >.,,,/&, + 2r A,,, 

Extension of these results to our problem 

points: 
Our problem is different from the traditional homogeneous Stokes problem on three main 

(a) the Q-periodicity boundary condition. 
(b) The unknown functions are complex. 
(c) The problem has a supplementary dynamic term. This quantity introduces a coupling effect 

between real and imaginary parts of the complex-valued unknown functions, so the problem 
becomes non-symmetric. 

The results of the Lagrangian formulation (5) solved by the Uzawa algorithm and applied to our 
case were given in Reference 1. We shall now perform a similar extension and application using the 
augmented Lagrangian formulation (6) and the Uzawa algorithm. 

The discrete problem to be solved can be written in a similar way to (8): vp)  and p p )  are presumed 
known and complex-valued. Find v p +  ') so that 

P 
2 

vU€w; -((U,Vp+'))) +iop(U,Vp+") 4- r ( d i v , u , d i v , v ~ + ' ) ) = ( u , F ) - ( d i v , u , p ~ ~ )  (9) 

and then find p p + ' )  so that 

V q ~ Q ; ( q , p p + " - p ~ ) )  = C(q,div,Vj:+')), 

where u, v("+ 'I, d"), q,p@),p("+ ') are complex-valued quantities which are chosen in suitable finite 
spaces with suitable scalar products. 

As previously, by separating real and imaginary parts, using matrix block notations we can 
express the two linear systems, with real values to be solved, thus: 

and 
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where the suffix 1 denotes the real part, the suffix 2 denotes the imaginary part, and U1 is the vector 
whose components are the conjugate complex numbers of the corresponding components of the 
vector u l .  

By simplifying { UT, U:} and { q:,  IT} we obtain as previously 

with G = MTD and B = MTM. 
The augmented Lagrangian formulation introduces the rDTD term on the diagonal blocks of 

the first linear system. 
In the static case ( o = O )  the Uzawa algorithm shows the same behaviour as for the 

homogeneous Stokes problem. 
In the dynamic case (o # 0) the problem becomes non-symmetric and the results of the preceding 

subsection on the convergence of the Uzawa algorithm are no longer valid. Nevertheless the 
structure of the first linear system in (10) shows that augmented Lagrangian formulation is well- 
adapted to our problem. It is a well-known, simple and traditional technique which has here a 
particular interest for the following reason. In choosing values of the parameter r in such a way that 
the matrix 

[ o p J  AirL'D] 

becomes pseudosymmetric (diagonal blocks A + rDTD dissimulating other blocks opJ) we can 
hope to increase the rate of convergence of the Uzawa algorithm. The structure of the dynamic 
problem (10) is then similar to the static one. We can hope to use the convergence results of the 
traditional homogeneous Stokes problem. 

But for the non-symmetric case, by means of a spectral study of the convergence of the Uzawa 
algorithm, it is not possible to test our prediction. Experimentation and testing would therefore 
confirm our hope. 

A + rDTD 

TEST ON A SIMPLE GEOMETRICAL CASE 

In porous media, the flow is a significant result. The average velocity over a period if!'" gives the 
flow as follows, due to the spatial periodicity properties: 

1 r  

1/! -- uE'di2 (for the ith component), 
:)- i Ai J 

(this is a complex number) where n is the number of steps in the Uzawa algorithm. The convergence 
of the Uzawa algorithm will then be tested with the parameter 

where 1 I represents the complex modulus. Numerical results will be compared to analytical ones, 
given by AvaIlet,* in the case of a narrow sit (Figure 2). 

The convergence of the Uzawa algorithm is proved, for our discrete problem when 
0 < c < 4r + 2. The proof can be extended from the static case,2 as was done in Reference 1 for 
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t x' 
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x2 

Figure 2. A narrow slit 

589 

In 
Figure 3. Mesh A for the narrow slit 

the traditional Lagrangian formulation. Note that discretization using bubble functions modifies 
the proof. Nevertheless, the results are still valid. Obviously, in the case of computations without 
bubble functions, and with o = 0, we must check all traditional theoretical results in Reference 2. 

The static case, o = 0 

In this case, we do not need computations with a bubble function to approximate the analytical 
solutions which are quadratic in velocity and constant in pressure. Many computations were 
performed for various parameters Y and c, without bubble functions and with mesh A, as in 
Figure 3. Figures 4 and 5 give the convergence of the Uzawa algorithm by plotting the parameter 
em 1 against the iteration number N for various values of r and c. 

The simplicity of the analytical solutions means that, the numerical results agree closely with 
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,; c=2.95 
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(a) 
Figure 4. - log (em 1) against the number of iterations N with w = 0, for several values of c and for .computations 

without bubble functions (a) with r = 1; (b) with r = 3; (c) with r = 6; (d) with r = 100 
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1 2 3 4 5 E 7 B 9 1Q 

Figure 5. - log (em 1) against the number of iterations N with o = 0, for c = cop,, various values of r and for computations 
without bubble functions 

Table I1 Table 111 

r 0 1  r 3 6 100 

Numerical 1 3 Numerical value of copt 7 13 20 1 
value of 
COP, Theoretical value: 

2 + r(Am + 2,) 
2 r i m 4 ,  + (L, + A,,,) 1,rro ( O < i , <  < 1 )  copt = r + 

1, rr 2 

7 13 20 1 

theoretical predictions. Moreover the convergence of the Uzawa algorithm is fast and the influence 
of r is low. The preconditioning technique is useless in this case, because the problem remains well- 
conditioned. Nevertheless, in this case, we tested our computations with the spectral study’ of 
the Uzawa algorithm convergence given in Table 11. The optimum parameter c = cOpt, for a given 
value of r,  is determined by experimentation. Results for Y = 0 and r = 1 are used to compute values 
of I ,  and AM. Theoretical predictions of cop, for other values of Y are then deduced and compared to 
experimental data. These results are given in Table 111. 

The dynamical case, w # 0 

The (non-symmetric) structure of the matrix A, of the linear system (10) does not permit a 
theoretical study of the Uzawa algorithm’s convergence. However, experimental investigations are 
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useful. Figures 6-8 give these results in the same way as Figures 4 and 5 applied to the static case 
(w = 0). 

N b. 20E0l 
1 2 3 4 5 6 7 a 9 10 

(b 1 
Figure6. -log ( e m l )  against the number of iterations N with 0 = 5 ,  for c=cOp,  and for various values of r: 

(a) computations without bubble functions; (b) computations with bubble functions 
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N 

Figure 7. - log (em I )  against the number of iterations N with w = 50, for c = cop, and for various values of r; 
(a) computations without bubble functions; (b) computations with bubble functions 
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Figure 9. Mesh B for the narrow slit 

These numerical experiments confirm our hopes. The behaviour of the Uzawa algorithm for the 
static case (w = 0, real unknowns) can be extended to the dynamic case (w # 0, complex unknowns) 
provided that we choose a suitable parameter r. The simple ruler = lOOw gives good results. In this 
case the optimum parameter cop, is predicted as for the static case (cop, = 2r + 1 for our discrete 
problem). Nevertheless, as for the usual static case, we must be wary of the accuracy of the results 
for large values of r. This is illustrated by an example given in Table IV. Table V shows that, with 
increased frequencies, the mesh should be refined to obtain accurate numerical solutions. 

NUMERICAL EXPERIMENT 

In this last part, we present computations for a severe geometrical case (Figure lo), in order to 
improve the numerical scheme employed. Figures 11 and 12 give these results in dimensionless 
form as previously.' At low frequencies, numerical values are confirmed and, as in Reference 1, 
agree closely with experimental data. At high frequencies, no significant experimental data are 
available at the present time. Nevertheless a theoretical model is p o s ~ i b l e . ~ ~ ' ~  Computations with 
the augmented Lagrangian formulation are also possible and correspond closely to such analytical 
predictions. 

Moreover faithful numerical results are reached after about only five steps in the Uzawa 
algorithm. For various pulsations w, Table VI gives the number of iterations N needed to obtain a 
solution for various pairs (r, c). 

On the other hand, there still remains a problem, i.e. the size of the discrete problem (memory 
storage). Consequently, suitable refinements in the mesh are not always possible. For instance, a 
mesh as in Figure 10 leads to 5580 degrees of freedom. 

CONCLUSION 

The use of complex unknown functions, coupled with this simple technique, seems to be an efficient 
method of solving this periodic, harmonic Navier-Stokes problem. The interest of the augmented 
Lagrangian technique is obvious. With a suitable parameter r, numerical behaviour of the Uzawa 
algorithm in the dynamic case is similar to that in the static case. 

Of course, as mentioned by Fortin and Glowinski' for the usual homogeneous Stokes problem, 
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Figure 10. The period R to be studied and the associated mesh 
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Figure 11. The complex 
dimensionless pulsation: 
functions; A previous 
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7T 

I 100 200 400 600 

modulus of the dimensionless ratio of body force F L F ,  to the average velocity VI, V ,  against 
+ experimental data (wrong at high frequencies); A previous results with r = 0 without bubble 
results with r = O  with bubble functions; 0 new results with r = 10,000 with bubble 

functions: -----theoretical modelling for large pulsations' 

other algorithms are available to solve the augmented Lagrangian formulation and give a faster 
convergence. But these refinements require an increase in memory size. For instance, if we consider 
the comparative study of chapter 2 of Reference 2, the conjugate gradient method allows the best 
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Figure 12. Phase of the ratio ( F , / V , )  against dimensionless pulsations: € experimental data (wrong at high frequencies); 
A previous results with r =0, with bubble functions; 0 new results with r = 10,0o0, with bubble functions; 

----theoretical modelling for high pulsations 

Table VT 

w r c Iteration 
number N 

0 0 1 50 

0 1000 2001 5 

0 10,000 20,001 5 

10 0 1.5 140 

10 10,000 20,001 5 

27 0 1.8 200 

27 10,000 20,001 5 

78 10,000 20,001 5 

200 10,000 20,oo 1 5 

600 10,000 20,001 5 

(These computations with a bubble function and the mesh of 
Figure 10 are always performed with the same initial pressure 

distribution.) 
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rate of convergence for the traditional Stokes problem. At each step of the algorithm we need to 
store in memory two additional vectors, whose dimensions are those of the discrete velocity vector. 
The rate of convergence is then roughly doubled compared to the traditional Uzawa algorithm we 
used. In our case, the size of the discrete problem is a sizeable restriction. 

The conforming finite elements of Crouzeix and Raviart, extended to complex unknown 
functions, rapidly provide a large linear system. Moreover experiments at high frequencies show 
that refinements in the mesh are required to obtain a good approximation, but are not always 
possible because of the size of the discrete problem. Nevertheless, use of bubble functions provides 
a partial answer to this problem at lower cost. What is most needed here is memory capacity. 
Further investigations would surely be better aimed at trying to reduce the size of the problem by 
using other finite elements (e.g. non-conforming finite elements). 

Finally we would like to comment on how to obtain an accurate numerical solution with our 
scheme: 

(a) Computations with bubble functions should be used. 
(b) With increased frequencies, the mesh should be refined. 
(c) r = 1OOw should be chosen. 
(d) It is advisable to choose c = cOpt = 2r + 1 for our dimensionless problem. 
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